Automated control of asphalt paving machinery in relative coordinate system

Presentation overview

1. Introduction
2. Research aim
3. Research results
4. Research conclusions
1. Introduction

BIM and Machine control in general

- BIM
 - Building Information Modeling
- Machine control (MC)
 - Accurate positioning & utilization of design models

1. Introduction

BIM and MC based paving

- Main phases
 1. Initial data is acquired by mobile laser scanning (condition of the road surface) and ground penetration radar (layers of the pavement/road)
 2. The analysis of the road’s present condition from the initial data
 3. 3D-design of the pavement rehabilitation with CAD-software
 4. Milling and paving executed with machine control
 5. The analysis of the new, repaired pavement by mobile laser scanning
1. Introduction
Initial data for design & Analysis of the road condition

- Model of the road’s surface with Mobile laser scanning

- Layers of the pavement/road
1. Introduction

Design-phase

- 3D-design with CAD-software
 - E.g. Microstation

Execution with machine control

- Automated 3D machine control
 - Global XY-coordinates
 - Global elevation (i.e. absolute Z-coordinate)

- Guiding machine control
 - Global XY-coordinates
 - Z relative to prevailing surface
 - “manual” control
1. Introduction

Benefits

- Repair of the road geometry to achieve specific aims (e.g. to make longitudinal or transversal slopes better)
 - Increasing driving safety
 - Making paving cycles longer
- Better process to allocate funds for the most problematic parts of the road (optimization of the rehabilitation)
 - Better tendering process
 - More efficient tendering with accurate information
 - More accurate mass volumes
 - Smaller risks, fewer unclarities
- Production of digital information from the road
 - Utilization of information models throughout the life cycle of the road

2. Research aim

1. GNSS receiver & antenna
2a. Ultrasonic sensor
 - Determination of milling drums relative depth
2b. Ultrasonic sensor
 - Automatic measurement of milling depth
3. Slope sensor
4. Computer and computer screen
2. Research aim

1. Research the economy of the method
2. Research the accuracy of the method
3. Development of machine control model

3. Results

Economy of the method

- Research methods
 - Interviews
 - Cost-information from actual projects
 - Cost-information from MC components
- Results
 - Economy is very good
 - Low costs in
 - Initial data gathering
 - Components
 - Operation
3. Results

Accuracy of the method

- Research methods
 - Interviews
 - Information from actual paving projects with current methods
 - Information from component manufacturers
 - Statistical methods

- Results
 - Method is accurate enough to meet tolerances set by the client
3. Results

Accuracy of the method

<table>
<thead>
<tr>
<th></th>
<th>Elevation [m]</th>
<th>Slope [% -point]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milling</td>
<td>Paving (leveling)</td>
</tr>
<tr>
<td>Standard error*</td>
<td>0.009</td>
<td>0,007</td>
</tr>
<tr>
<td>Probability to achieve tolerances</td>
<td>97,37 %</td>
<td>99.57 %</td>
</tr>
</tbody>
</table>

* Presumed that there is no systematic error
1. Highways/motorways
2. Other main roads
3. Regional roads

3. Results

Development of machine control model for the method

- Research methods
 - Interviews
 - Literary review
 - Workshop
- Results
 - Developed machine control model is suitable for the model
 - Model has an attribute which makes it less vulnerable positioning errors
3. Results

Development of suitable machine control method

Update of Buildingsmart Finland’s Common InfraBIM Requirements guide
4. Conclusions

<table>
<thead>
<tr>
<th>CURRENT METHODS</th>
<th>RESEARCHED METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional paving</td>
<td>Automated machine control</td>
</tr>
<tr>
<td>Results with lowest quality (not based on accurate design)</td>
<td>Guiding machine control</td>
</tr>
<tr>
<td>Results with high quality (i.e. accurate)</td>
<td>Automated machine control in relative coordinate system</td>
</tr>
<tr>
<td>Easy to execute</td>
<td>Results with high quality (i.e. accurate)</td>
</tr>
<tr>
<td>The data transfer between different equipment is vulnerable to disturbances</td>
<td>Quite easy to execute & inexpensive MC-method</td>
</tr>
<tr>
<td>Easily disturbed actions, prone to human errors</td>
<td>Results with high quality (i.e. accurate)</td>
</tr>
<tr>
<td>No machine control</td>
<td>Expensive</td>
</tr>
<tr>
<td>The results aren’t as good quality as in automated machine control methods</td>
<td>Easier to execute & economic alternative</td>
</tr>
<tr>
<td>Requires development of new MC system</td>
<td></td>
</tr>
</tbody>
</table>